150 research outputs found

    17 Human-Car confluence: “Socially-Inspired driving mechanisms”

    Get PDF
    With self-driving vehicles announced for the 2020s, today’s challenges in Intelligent Transportation Systems (ITS) lie in problems related to negotiation and decision making in (spontaneously formed) car collectives. Due to the close coupling and interconnectedness of the involved driver-vehicle entities, effects on the local level induced by cognitive capacities, behavioral patterns, and the social context of drivers, would directly cause changes on the macro scale. To illustrate, a driver’s fatigue or emotion can influence a local driver-vehicle feedback loop, which is directly translated into his or her driving style, and, in turn, can affect driving styles of all nearby drivers. These transitional, yet collective driver state and driving style changes raise global traffic phenomena like jams, collective aggressiveness, etc. To allow harmonic coexistence of autonomous and self-driven vehicles, we investigate in this chapter the effects of socially-inspired driving and discuss the potential and beneficial effects its application should have on collective traffic

    Quantification of friction force reduction induced by obstetric gels

    Get PDF
    The objective of this study was to quantify the reduction of friction forces by obstetric gels aimed to facilitate human childbirth. Lubricants, two obstetric gels with different viscosities and distilled water, were applied to a porcine model under mechanical conditions comparable to human childbirth. In tests with higher movement speeds of the skin relative to the birth canal, both obstetric gels significantly reduced dynamic friction forces by 30-40% in comparison to distilled water. At the lowest movement speed, only the more viscous gel reduced dynamic friction force significantly. In tests modifying the dwell time before a movement was initiated, static friction forces of trials with highly viscous gel were generally lower than those with distilled water. The performed biomechanical tests support the recommendation of using obstetric gels during human childbirth. Using the presented test apparatus may reduce the amount of clinical testing required to optimize gel formulatio

    Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection

    Get PDF
    Drowsy driving imposes a high safety risk. Current systems often use driving behavior parameters for driver drowsiness detection. The continuous driving automation reduces the availability of these parameters, therefore reducing the scope of such methods. Especially, techniques that include physiological measurements seem to be a promising alternative. However, in a dynamic environment such as driving, only non- or minimal intrusive methods are accepted, and vibrations from the roadbed could lead to degraded sensor technology. This work contributes to driver drowsiness detection with a machine learning approach applied solely to physiological data collected from a non-intrusive retrofittable system in the form of a wrist-worn wearable sensor. To check accuracy and feasibility, results are compared with reference data from a medical-grade ECG device. A user study with 30 participants in a high-fidelity driving simulator was conducted. Several machine learning algorithms for binary classification were applied in user-dependent and independent tests. Results provide evidence that the non-intrusive setting achieves a similar accuracy as compared to the medical-grade device, and high accuracies (&gt 92%) could be achieved, especially in a user-dependent scenario. The proposed approach offers new possibilities for human&ndash machine interaction in a car and especially for driver state monitoring in the field of automated driving. Document type: Articl

    Towards a Common Understanding of Driving Simulator Validity

    Get PDF
    Driving simulators are among the most often used research tools in the AutomotiveUI community. However, no common understanding on when a simulator should be considered valid and how driving simulator validity should be investigated exists, despite numerous publications related to the topic throughout the past four decades. The present paper aims at achieving a more refined understanding of what driving simulator validity actually is. We propose a framework which may be used in context of driving simulator studies and provide recommendations for researchers approaching simulator validation

    The Role and Potentials of Field User Interaction Data in the Automotive UX Development Lifecycle: An Industry Perspective

    Full text link
    We are interested in the role of field user interaction data in the development of IVIS, the potentials practitioners see in analyzing this data, the concerns they share, and how this compares to companies with digital products. We conducted interviews with 14 UX professionals, 8 from automotive and 6 from digital companies, and analyzed the results by emergent thematic coding. Our key findings indicate that implicit feedback through field user interaction data is currently not evident in the automotive UX development process. Most decisions regarding the design of IVIS are made based on personal preferences and the intuitions of stakeholders. However, the interviewees also indicated that user interaction data has the potential to lower the influence of guesswork and assumptions in the UX design process and can help to make the UX development lifecycle more evidence-based and user-centered

    Interacting with Autonomous Vehicles: Learning from other Domains

    Get PDF
    The rise of evermore autonomy in vehicles and the expected introduction of self-driving cars have led to a focus on human interactions with such systems from an HCI perspective over the last years. Automotive User Interface researchers have been investigating issues such as transition control procedures, shared control, (over)trust, and overall user experience in automated vehicles. Now, it is time to open the research field of automated driving to other CHI research fields, such as Human-Robot-Interaction (HRI), aeronautics and space, conversational agents, or smart devices. These communities have been dealing with the interplay between humans and automated systems for more than 30 years. In this workshop, we aim to provide a forum to discuss what can be learnt from other domains for the design of autonomous vehicles. Interaction design problems that occur in these domains, such as transition control procedures, how to build trust in the system, and ethics will be discussed

    Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children

    Get PDF
    BACKGROUND: Virtual reality (VR) offers powerful therapy options within a functional, purposeful and motivating context. Several studies have shown that patients' motivation plays a crucial role in determining therapy outcome. However, few studies have demonstrated the potential of VR in pediatric rehabilitation. Therefore, we developed a VR-based soccer scenario, which provided interactive elements to engage patients during robotic assisted treadmill training (RAGT). The aim of this study was to compare the immediate effect of different supportive conditions (VR versus non-VR conditions) on motor output in patients and healthy control children during training with the driven gait orthosis Lokomat*. METHODS: A total of 18 children (ten patients with different neurological gait disorders, eight healthy controls) took part in this study. They were instructed to walk on the Lokomat in four different, randomly-presented conditions: (1) walk normally without supporting assistance, (2) with therapists' instructions to promote active participation, (3) with VR as a motivating tool to walk actively and (4) with the VR tool combined with therapists' instructions. The Lokomat gait orthosis is equipped with sensors at hip and knee joint to measure man-machine interaction forces. Additionally, subjects' acceptance of the RAGT with VR was assessed using a questionnaire. RESULTS: The mixed ANOVA revealed significant main effects for the factor CONDITIONS (p < 0.001) and a significant interaction CONDITIONS x GROUP (p = 0.01). Tests of between-subjects effects showed no significant main effect for the GROUP (p = 0.592). Active participation in patients and control children increased significantly when supported and motivated either by therapists' instructions or by a VR scenario compared with the baseline measurement "normal walking" (p < 0.001). CONCLUSIONS: The VR scenario used here induces an immediate effect on motor output to a similar degree as the effect resulting from verbal instructions by the therapists. Further research needs to focus on the implementation of interactive design elements, which keep motivation high across and beyond RAGT sessions, especially in pediatric rehabilitation

    Report on the In-vehicle Auditory Interactions Workshop: Taxonomy, Challenges, and Approaches

    Get PDF
    Jeon M, Hermann T, Bazilinskyy P, et al. Report on the In-vehicle Auditory Interactions Workshop: Taxonomy, Challenges, and Approaches. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications - Automotive'UI 15. 2015: 1-5.As driving is mainly a visual task, auditory displays play a critical role for in-vehicle interactions.To improve in-vehicle auditory interactions to the advanced level, auditory display researchers and automotive user interface researchers came together to discuss this timely topic at an in-vehicle auditory interactions workshop at the International Conference on Auditory Display (ICAD).The present paper reports discussion outcomes from the workshop for more discussions at the AutoUI conference
    • …
    corecore